The influence of torrefaction on the biochar characteristics produced from sesame stalks and bean husk

Author:

Khairy M.,Amer M.,Ibrahim M.,Ookawara S.,Sekiguchi H.,Elwardany A.ORCID

Abstract

AbstractTorrefaction encourages homogeneity and enhances the energy-producing capabilities of biomass. In the current study, bean husk (BH) and sesame stalks (SS) were torrefied for 30 and 60 min at operating temperatures of 200, 225, 250 and 275, and 300 °C with nitrogen purging. Mass yield (MY), higher heating value (HHV), energy yields (EY), and torrefaction severity index (TSI) were examined. The variations of the biochar characteristics, pyrolysis kinetics by applying two models (Coats and Redfern (CR) and Direct Arrhenius (DA)), and crystallinity index (CRI) were depicted. Depending on pyrolysis kinetics, thermodynamic activation parameters were derived to elucidate biomass pyrolysis. The alterations in the torrefied materials’ composition were also analyzed using Fourier transform infrared spectroscopy (FTIR). The calculations revealed that the torrefied SS and BH decreased MY by 32.74, 29.02% and decreased EY 26, 20.97%, increased high heating values by 14.1, 13.52%, increased fixed carbon by 55.1, 39.91% respectively, and had a slight reduction in bulk density (approximately 2%). Generally, 275 °C and 30 min were the optimal conditions for a balanced torrefaction of SS and BH based on the HHV that reached to 20.5, 16.2 MJ/kg and EY that reached to 86.16 and 85.56% respectively. The FTIR, XRD, and the thermogravimetric results showed that the torrefaction treatment altered samples owing to carbohydrate breakdown, a rise in lignin, and a reduction in hemicellulose as the temperature of the torrefaction process increased. The CR methodology yielded greater frequency factor (A) and activation energy (Ea) values than the DA method. The broadest peak width, lowest average Ea, and lnA were seen in sesame stalks that had been torrefied at 300 °C and 30 min that reached to 107.85 (kJ/mol) and 13.57 (min−1). Results indicated an excellent linear relationship with the index of comprehensive pyrolysis (CPI), CRI, atomic H/C ratio, severity index, and EY.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3