Pilot-scale development of pressurized fixed-bed gasification for synthesis gas production from biomass residues

Author:

Kurkela EsaORCID,Kurkela Minna,Hiltunen Ilkka

Abstract

AbstractAdvanced transportation biofuels have been the focus of intensive development since the early 2000s, and gasification in combination with synthesis technologies represents a flexible production pathway to deliver fuels for heavy-duty transport sectors that are difficult to electrify. This article is related to the pilot-scale development of a process concept aiming to smaller-scale production plants than are feasible with fluidized-bed gasifiers. Five test weeks with a total gasification time of 347 h were realized at a pilot plant that consisted of the pressurized staged fixed-bed gasifier, raw gas cooling to 500–600 °C, filtration with robust metal filters, and catalytic reforming of tars and methane. The gasifier combined an updraft primary stage and a catalytically enhanced secondary stage where most of the updraft tars were decomposed. The tar content of the product gas, 2–12 g/m3, was of the same order of magnitude as determined previously for fluidized-bed gasifiers. Consequently, similar filtration and reforming methods could be successfully applied. After the reformer, the contents of C2-hydrocarbon gases and high-molecular-weight tars were negligible.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3