Influential lead uptake using dried and inactivated-fungal biomass obtained from Panaeolus papilionaceus: biological activity, equilibrium, and mechanism

Author:

Şenol Zeynep MineORCID,Keskin Zehra Saba,Dinçer Emine,Ayed Amina Ben

Abstract

AbstractIn this study, the use of fungal (Panaeolus papilionaceus) biomass as a biosorbent was investigated to effectively remove Pb2+ ions from aquatic medium. The removal of Pb2+ ions using a fungal biosorbent was examined in a batch system in terms of initial solution pH, temperature, time, and initial Pb2+ concentration. Optimal operating conditions for biosorption of Pb2+ ions; pH: 4.5, T: 25 °C, and t: 24 h. The max biosorption capacity for Pb2+ ions was found to be 31.2 mg g−1 from the Langmuir model. Thermodynamic studies showed that Pb2+ ions biosorption into fungal biomass was possible, spontaneous, and endothermic. Additionally, the antimicrobial activity and antibiofilm activity of the extract of fungus were also investigated. It was determined that the fungal extract did not have antimicrobial properties. On the other hand, the extract has been shown to have the potential to prevent biofilm formation. 1 mg of the extract prevented the biofilm formation of Staphylococcus aureus by 87.85%. It has been observed that the biosorption mechanism of Pb2+ ions into fungal biomass includes the steps of surface biosorption, film diffusion, and intra-particle diffusion.

Funder

Sivas Cumhuriyet University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3