Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques

Author:

El-Sayed Saad A.,Khass Tarek M.,Mostafa Mohamed E.

Abstract

AbstractThe goal of the current study is to investigate the thermal degradation of palm fronds (PF), olive leaves (OL), and wheat straw (WS) through pyrolysis and calculate their kinetic data using TG-DTG and DTA approaches. The kinetic parameters were assessed using isoconversional techniques like the Ozawa-Flynn-Wall (OFW) and Kissinger–Akahira–Sunose (KAS) methods, as well as model-fitting techniques like the integral method, which employs various diffusion and reaction order models. Using kinetics data models, typical parameters for pyrolysis and thermodynamics were estimated. For PF, OL, and WS, the values of activation energy (E) from the integral method ranged between 8.82 and 167.13, 23.06 and 149.20, and 11.01 and 156.27, respectively, for diffusion models. On the other hand, the values of (E) ranged between 22.3 and 117.49, 51.69 and 92.88, and 23.48 and 125.97, respectively, for reaction-order models. The average activation energies (E) calculated by using PF, OL, and WS samples are 91.9, 69.1, and 65.2, respectively, for the OFW method and 87.5, 101.8, and 63.4, respectively, for the KAS method. The results demonstrated that the integral method provided values of (E) that were almost identical to those produced by the KAS and OFW methods. In the same range of (α), results showed that reaction order models yielded greater frequency factor values than diffusion models, demonstrating how simpler and quicker pyrolysis is. The values of ($${\Delta \mathrm{G}}_{av}$$ Δ G av ) demonstrated the acceptability of these materials for pyrolysis, and for the OFW and KAS techniques, the sequence of the degradation process was OL > WS > PF. The calculated ($${\Delta \mathrm{G}}_{av}$$ Δ G av ) showed that more heat energies are required for OL, PF, and WS to dissociate the reagent bonds, which agrees with the (E) values derived from the OFW model. Graphical Abstract

Funder

Egyptian Science & Technology Development Fund (STDF) of Egypt

Zagazig University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3