Synthesis, characterization, and DFT investigation of rhodamine B dye removal by activated carbon produced from argan nutshell

Author:

Ouardi Youssef El,Aissouq Abdellah El,Chennah Ahmed,Ouammou Abdelkrim,Laatikainen Katri

Abstract

Abstract A significant environmental concern is posed by wastewater containing dyes. When dealing with a polluted medium, adsorption is a beneficial method for the removal of contaminants. This study used argan nutshell as a precursor to synthesize activated carbon via chemical activation with Na2CO3 at 600 °C. The prepared activated carbon (Na@Ac) was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), and zeta potential measurements. The results showed that the prepared activated carbon has a high surface area (1543 m2/g) and microporous structure. Furthermore, many parameters for Rhodamine B (RhB) dye removal efficiency, including pH, initial pollutant concentration, and temperature, were optimized by response surface methodology (RSM) with a central composite design. Based on the RSM, the best efficiency was 96.84% for the removal of RhB at pH 5, temperature 20 °C, and initial concentration 33.2 mg/L. The kinetic of RhB dye adsorption onto Na@Ac was effectively explained by a pseudo-second-order model, with a maximum uptake capacity of 35.9 mg/g. Moreover, Density functional theory (DFT) calculations were used to understand the adsorption mechanism of the RhB dye onto the Na@Ac. Based on the DFT calculations, hydrogen bonding and π-π interactions may be preferred mechanisms of RhB dye adsorption onto Na@Ac. The Na@Ac could be a promising adsorbent for the removal of Rhodamine B from polluted wastewater.

Funder

Etelä-Karjalan Säästöpankkisäätiö

LUT University (previously Lappeenranta University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3