Using threshold values to continuously evaluate how effectively electrostatic precipitators operate

Author:

Alt BastianORCID,Klüh Daniel,Koch Katharina,Huber Bernhard,Gaderer Matthias

Abstract

AbstractThe increased use of biomass as a fuel in energy production can reduce CO2 emissions in this sector. Fossil fuels can thus be replaced, especially in the field of heat supply. However, this should not occur at the expense of increased particulate matter emissions, which is why electrostatic precipitators (ESPs) are used. Continuous monitoring of the ESP is called for in the European Union Directive 2015/2193 for medium combustion plants (MCP), which applies to plants with a nominal heat output of between 1 and 50 MW. A monitoring methodology based on the precipitator parameters current (I) and voltage (U) was presented in an earlier presentation. The work at hand follows up on the previous findings and presents an alternative methodology that aims to define the effectiveness of the ESP via threshold values for U and I. It is shown that two types of misinterpretation of the operation may occur when threshold values are defined. The operating condition could be regarded as effective via the methodology, although the measurement proves ineffective in operation and the opposite error also occurs. The statistical evaluation of the frequency of errors is intended to help the legislative authorities determine the threshold values in a reasonable way. In addition, checks are made as to whether it is possible to verify the operation of the combustion system via the flue gas temperature. The operating times of the combustion are essential, as they define the operating times required by the precipitator. In this context, statistical evaluations are made to determine which plant-specific threshold value could be useful. The aim is to test the effective operation of the separator from readily available data at all times. These considerations could form the basis for developing a uniform methodology to ensure compliance with the legal requirements.

Funder

Fachagentur Nachwachsende Rohstoffe

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Reference32 articles.

1. Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi KL, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Payne A, Seneviratne SI, Thomas A, Warren R, Zho G (2018) Impacts of 1.5°C global warming on natural and human systems. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

2. United Nations Report Of The Secretary-General On The 2019 Climate Action Summit And The Way Forward In, p 2020

3. Edenhofer O (ed) (2012) Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

4. Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse. Berlin, Heidelberg, Springer Berlin Heidelberg

5. Nyström R, Lindgren R, Avagyan R, Westerholm R, Lundstedt S, Boman C (2017) Influence of wood species and burning conditions on particle emission characteristics in a residential wood stove. Energy Fuel 31(5):5514–5524. https://doi.org/10.1021/acs.energyfuels.6b02751

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3