Evolutionary optimization of biogas production from food, fruit, and vegetable (FFV) waste

Author:

Olatunji Obafemi O.ORCID,Adedeji Paul A.,Madushele Nkosinathi,Rasmeni Zelda Z.,van Rensburg Nickey Janse

Abstract

AbstractThe success of anaerobic digestion (AD) process for biogas production is contingent upon complex mix of operating factors, process conditions, and feedstock types, which could be affected by inadequate understanding of microbial, kinetic, and physicochemical processes. To address these limitations, efforts have been directed toward developing mathematical and intelligent models. Although mathematical models provide near-optimal solutions, they are time consuming, highly expensive, and demanding. Intelligent standalone models are also limited by their low predictive capability and inability to guarantee global optimal solution for the prediction of cumulative biogas yield for FFV waste. However, hyperparameter optimization of such models is essential to improve the prediction performance for cumulative biogas yield for FFV waste. Therefore, this study applies a genetic algorithm (GA) to optimize an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of cumulative biogas production. Seven (7) input variables, organic loading rate (OLR), volatile solids (VS), pH, hydraulic retention time (HRT), temperature, retention time, and reaction volume, were considered with cumulative biogas production as the output. The effect of varying clustering techniques was evaluated. The three (3) clustering techniques evaluated are fuzzy c-means and subtractive clustering and grid partitioning. The hybrid model was evaluated based on some verified statistical performance metrics. Optimal root mean squared error (RMSE), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and standard deviation error (error STD) of 0.0529, 0.0326,7.6742, and 0.0474, respectively, were reported at the model testing phase for the subtractive clustering technique being the best-performing model. The results confirm the capacity of hybrid evolutionary (genetic) algorithm based on subtractive clustering technique to predict the biogas yield from FFV and serve as an effective tool for the upscaling of anaerobic digestion units as well as in techno-economic studies toward more efficient energy utilization. Graphical abstract

Funder

University of Johannesburg

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Reference81 articles.

1. WorldBank (2022) What a waste global database. https://datacatalog.worldbank.org/search/dataset/0039597. Accessed on 28 May 2022

2. U. Nations (2021) Stop food loss and waste, for the people, for the panet. https://www.un.org/en/observances/end-food-waste-day#:~:text=Globally%2C%20around%2014%20percent%20of,and%202%20percent%20in%20retail). Accessed on 10 Feb 2022

3. F. America (2022) How we fight food waste in the US. https://www.feedingamerica.org/our-work/our-approach/reduce-food-waste#:~:text=How%20much%20food%20waste%20is,food%20thrown%20away%20each%20year. Accessed on 09 Feb 2021

4. FAO (2021) Food wastage footprint. https://www.fao.org/news/story/en/item/196402/icode/

5. Li R (2022) Integrating the composition of food waste into the techno-economic analysis of waste biorefineries for biodiesel production. Bioresour Technol Rep 20:101254

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Environmental Aspect of Waste and By-Product from Food Industry and Their Management;Biological Treatment of Waste and By-Products from Food Industry;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3