Zero-valent iron supported-lemon derived biochar for ultra-fast adsorption of methylene blue

Author:

Abd El-Monaem Eman M.,Omer Ahmed M.,El-Subruiti Gehan M.,Mohy-Eldin Mohamed S.,Eltaweil Abdelazeem S.

Abstract

Abstract Green-based materials represent a new promising class of ecofriendly and economic adsorbents. Herein, nano zero-valent iron supported-lemon derived biochar (NZVI-LBC) was prepared for the first time and examined in the adsorptive removal of methylene blue as a model pollutant. Different characterization tools were used to ensure the successful fabrication of the NZVI-LBC composite including FTIR, XRD, TEM, XPS, VSM, BET, and zeta potential analysis. It was found that the fabricated NZVI–supported biochar composite attained the propitious adsorbent criteria since it provided a supreme efficient adsorption process at short  time. The reckoned maximum adsorption capacity of MB onto NZVI-LBC reached 1959.94 mg/g within merely 5 min. The obtained data clarified that the adsorption process of MB onto NZVI-LBC fitted pseudo 2nd order kinetic model and Freundlich isotherm model. Besides, the adsorption process of MB onto NZVI-LBC was found to be endothermic in nature. In addition, NZVI-LBC composite revealed an excellent adsorption behavior even after seven cycles. The concrete results reflect the potentiality of NZVI-LBC composite to be a superb candidate to remove cationic pollutants from their aqueous solutions. Graphical abstract

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3