Hardwood spent mushroom substrate–based activated biochar as a sustainable bioresource for removal of emerging pollutants from wastewater

Author:

Grimm Alejandro,dos Reis Glaydson Simões,Dinh Van Minh,Larsson Sylvia H.,Mikkola Jyri-Pekka,Lima Eder Claudio,Xiong Shaojun

Abstract

Abstract Hardwood spent mushroom substrate was employed as a carbon precursor to prepare activated biochars using phosphoric acid (H3PO4) as chemical activator. The activation process was carried out using an impregnation ratio of 1 precursor:2 H3PO4; pyrolysis temperatures of 700, 800, and 900 °C; heating rate of 10 °C min−1; and treatment time of 1 h. The specific surface area (SSA) of the biochars reached 975, 1031, and 1215 m2 g−1 for the samples pyrolyzed at 700, 800, and 900 °C, respectively. The percentage of mesopores in their structures was 75.4%, 78.5%, and 82.3% for the samples pyrolyzed at 700, 800, and 900 °C, respectively. Chemical characterization of the biochars indicated disordered carbon structures with the presence of oxygen and phosphorous functional groups on their surfaces. The biochars were successfully tested to adsorb acetaminophen and treat two simulated pharmaceutical effluents composed of organic and inorganic compounds. The kinetic data from adsorption of acetaminophen were fitted to the Avrami fractional-order model, and the equilibrium data was well represented by the Liu isotherm model, attaining a maximum adsorption capacity of 236.8 mg g−1 for the biochar produced at 900 °C. The adsorption process suggests that the pore-filling mechanism mainly dominates the acetaminophen removal, although van der Walls forces are also involved. The biochar produced at 900 °C removed up to 84.7% of the contaminants in the simulated effluents. Regeneration tests using 0.1 M NaOH + 20% EtOH as eluent showed that the biochars could be reused; however, the adsorption capacity was reduced by approximately 50% after three adsorption–desorption cycles.

Funder

Energimyndigheten

Svenska Forskningsrådet Formas

VINNOVA

Bio4Energy

Swedish University of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3