Design and fabrication of biomass densification machine for teaching and research purposes

Author:

Ibitoye Segun E.,Mahamood Rasheedat M.,Jen Tien-Chien,Loha Chanchal,Akinlabi Esther T.

Abstract

AbstractIn developing nations, research output is limited due to factors like unreliable power supply and inadequate laboratory equipment. The high cost of purchasing completed laboratory equipment and the unavailability of accessories for imported equipment further contribute to this issue. A biomass densification machine was designed and constructed to address these challenges for teaching and research purposes. The machine was tested at five different compaction pressures (100, 200, 300, 400, and 500 kPa) using gelatinized cassava starch as a binder. The physical and mechanical characteristics of the produced fuel briquettes were investigated following ASTM standards and procedures reported in the literature. The results show that the physical and mechanical properties of the fuel briquettes increase with compaction pressure. The compressive strength, durability, and water resistance of the briquettes varied between 55 and 101 kN·m−2, 89–99%, and 20–120 min, respectively, while the compressed and relaxed densities range from 0.780 to 1.220 g·cm−3 and 0.670 to 0.990 g·cm−3, respectively. The machine performed satisfactorily because the briquettes’ characteristics were found to meet the specified ISO Standard (17225). The development of this machine will enable academic institutions, researchers, and students to harness the potential of biomass through the densification process without the challenges posed by imported equipment. The creation of the machine will also facilitate students’ hands-on learning. By providing an easily accessible and reliable platform, academic and research institutions can integrate biomass solid fuel production experiments into their curricula, fostering a thorough understanding of renewable energy solutions and supporting sustainable practices. Therefore, it can be recommended for teaching and research in developing nations. Incorporating an electronic component, such as a digital pressure gauge and electric hydraulic jack, is recommended for future research to enhance the performance.

Funder

University of Johannesburg

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3