Starch-grafted-poly(acrylic acid)/Pterocladia capillacea–derived activated carbon composite for removal of methylene blue dye from water

Author:

Shoaib Amany G. M.,Sikaily Amany El,Ragab Safaa,Masoud Mamdouh S.,Ramadan Mohamed S.,El Nemr AhmedORCID

Abstract

AbstractStarch-g-poly(acrylic acid)/Pterocladia capillacea–derived activated carbon (St-g-P(AA)/P-AC) composites were prepared via aqueous solution graft copolymerization using starch, acrylic acid, and activated carbon of red alga Pterocladia capillacea (0–10%) with N,N′-methylenebisacrylamide crosslinker and ammonium persulfate (NH4)2S2O8 initiator. Fourier-transform infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) were used to characterize St-g-P(AA)/P-AC composites. Additionally, St-g-P(AA)/P-AC composites were investigated for methylene blue (MB) dye removal from water. The impact of the beginning concentration of MB dye, temperature, pH, and adsorption time on MB dye removal was examined. The maximum adsorption capacity obtained at pH 8 was 496.29 mg/g at 0.02 mg/L composites dose and 100 mg/L MB dye. The properties of adsorption were studied by the adsorption isotherm, kinetic, and thermodynamic models. The pseudo-first-order and Freundlich isotherm models demonstrated the kinetics and equilibrium adsorptions data, respectively. The maximum monolayer capacity (qm) was 1428.57 mg/g from Langmuir isotherm. Thermodynamic parameters indicated that the MB dye adsorption is exothermic physisorption and spontaneous. The results show that St-g-P(AA)/P-AC composites were effective for MB dye adsorption from water solution and could be recycled.

Funder

Science and Technology Development Fund

National Institute of Oceanography & Fisheries

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3