Enhancing microstructural and biomethane yield of Xyris capensis using combined oxidative and nanoparticle additive pretreatment methods

Author:

Olatunji Kehinde O.ORCID,Madyira Daniel M.

Abstract

AbstractRenewable energy production from lignocellulose materials is a significant interest of modern research because it can assist in reducing the global challenges of climate preservation and energy demand. Lignocellulose materials are recalcitrant and are not easy to digest during anaerobic digestion, and this necessitated their pretreatment before anaerobic digestion for effective and efficient use of the feedstock. Therefore, this study investigated the effect of oxidative, nanoparticle additive, and combined pretreatment on the microstructural arrangement and biomethane yield of Xyris capensis, an economical feedstock that is readily available. Xyris capensis was pretreated with the oxidizing agent at varying conditions of H2O2: H2SO4 using 100: 0%, 95: 5%, 85: 15%, and 75: 25%. The effects of the pretreatment on the microstructure, crystallinity, and functional groups of the substrate were investigated. Pretreated and untreated substrates were digested as mono pretreatment and in combination with 20 mg/L Fe3O4 (< 50 nm) nanoparticles at mesophilic temperature to study the influence of pretreatment on biomethane yield. Results from structural analyses showed that the pretreatment conditions have a varying degree of effect on the microstructural arrangement. The optimum biomethane yield of 212.18 mL CH4/gVSadded, representing 48% improvement, was recorded for a single pretreatment. For the combined pretreatment method, the highest biomethane yield of 278.59 mL CH4/gVSadded, which represents a 95% increase, was observed. Therefore, combined oxidative pretreatment and Fe3O4 nanoparticle additive could be a promising approach to debase the recalcitrant properties of lignocellulose feedstock microstructure to enhance the biomethane yield. This technique can improve energy recovery from lignocellulose materials, assist in decarbonization of the environment, and can be examined on a commercial scale.

Funder

University of Johannesburg

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3