Optimization of steam explosion parameters for improved biotechnological use of wheat straw

Author:

Sulzenbacher Daniel,Atzmüller Denise,Hawe Felix,Richter Manuela,Cristobal-Sarramian Alvaro,Zwirzitz AlexanderORCID

Abstract

AbstractUsing lignocellulosic raw materials as substrate for biotechnological applications has been a focus of research during the last two decades. They contain sugars, which can be used in industrial fermentation processes, in from of polysaccharides (cellulose, hemicellulose). Wheat straw, one representative of lignocellulosic materials, is sustainably and abundantly available, especially in Europe and North America. However, wheat straw, just like any other lignocellulosic material, needs to be pretreated in one way or the other in order to generate sufficient quantities of monosaccharides. One widely used pretreatment for lignocellulosic material is steam explosion combined with enzymatic hydrolysis. In this study, the effects of steam exploding wheat straw in combination with water are presented. By impregnation with water, saccharide yields from subsequent enzymatic hydrolysis increased from 18.8 to 22.6 g L−1 for glucose and 13.8 to 16.4 g L−1 for xylose, respectively. Moreover, the basic steam explosion parameters residence time and temperature were optimized in ranges from 5 to 20 min and 180–200 °C. This further optimization increased the maximum saccharide yield to 41.2 g L−1 for glucose (200 °C, 15 min) and 18.9 g L−1 for xylose (190 °C, 10 min). Finally, the growth of the intensively investigated biotechnological production host Yarrowia lipolytica on hydrolysates derived from different steam explosion parameters was evaluated. Y. lipolytica grew well in media containing up to 90% wheat straw hydrolysate as sole carbon source, demonstrating the potential as substrate for biotechnological processes.

Funder

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3