On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil

Author:

Osatiashtiani Amin,Puértolas Begoña,Oliveira Caio C. S.,Manayil Jinesh C.,Barbero Brunella,Isaacs Mark,Michailof Chrysoula,Heracleous Eleni,Pérez-Ramírez Javier,Lee Adam F.,Wilson KarenORCID

Abstract

AbstractA family of faujasite (FAU) zeolites with different Si:Al ratio, and/or hierarchical porosity introduced via post-synthetic alkaline desilication treatment, have been evaluated as solid acid catalysts for esterification pretreatments of pyrolysis bio-oil components. Acetic acid esterification with aliphatic and aromatic alcohols including methanol, anisyl alcohol, benzyl alcohol, p-cresol and n-butanol was first selected as a model reaction to identify the optimum zeolite properties. Materials were fully characterised using N2 porosimetry, ICP, XRD, XPS, FT-IR, pyridine adsorption, NH3 TPD, In-situ ATR and inverse gas chromatography (IGC). IGC demonstrates that the surface polarity and hence hydrophobicity of FAU decreases with increased Si:Al ratio. Despite possessing a higher acid site loading and acetic acid adsorption capacity, high Al-content FAU possess weaker acidity than more siliceous catalysts. Esterification activity increases with acid strength and decreasing surface polarity following the order FAU30>FAU6>FAU2.6. The introduction of mesoporosity through synthesis of a hierarchical HFAU30 material further enhances esterification activity through improved acid site accessibility and hydrophobicity. Methanol was the most reactive alcohol for esterification, and evaluated with HFAU30 for the pretreatment of a real pyrolysis bio-oil, reducing the acid content by 76% under mild conditions.

Funder

Engineering and Physical Sciences Research Council

European Union Seventh Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3