Abstract
Abstract
In this study, the clay was interwoven with cellulose to change its structure. The product clay/cellulose was used to assess the efficacy of the methylene blue (MB) dye removal from aqueous solutions (CC25). The response surface methodology and Box-Behnken design were used to optimize the influence of crucial parameters (cellulose load, adsorbent dosage, solution pH, temperature, and contact duration) (RSM-BBD). The greatest removal effectiveness was 98.76% for a cellulose loading of 25.0% and the following working conditions, i.e., adsorbent dosage of 0.06 g/L, pH 7, temperature of 45 °C, and contact length of 20 min. At the time, the maximum adsorption capacity was 254.8 mg/g. The pseudo-second-order adsorption model, according to the adsorption kinetics research, was used to describe the process. The MB adsorption process was endothermic and spontaneous, according to computed thermodynamic functions. The developed composite material, according to our results, has a very high capacity for the color absorption and removal.
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献