Activated eco-waste of Posidonia oceanica rhizome as a potential adsorbent of methylene blue from saline water

Author:

Elmorsi Randa R.,Abou-El-Sherbini Khaled S.,Shehab El-Dein Waleed A.,Lotfy Hesham R.

Abstract

AbstractA new activated adsorbent was produced from the debris of Posidonia oceanica rhizomes (POR). POR were activated in acetic acid and utilized as an eco-adsorbent for the removal of cationic dye methylene blue (MB) from saline solutions. The purified Posidonia oceanica rhizomes (PPOR) and its activated form (APOR) were characterized by elemental analysis, pH-metric titration, Fourier transformer infrared (FTIR), and surface area measurements, which inferred a remarkable activation of APOR. An enhancement in the free acidic sites was confirmed. The adsorption data obtained were analyzed using Langmuir, Freundlich, Temkin, Dubinin-Kaganer-Raduskavich (DKR), and Redlich and Peterson (RP) isotherm models. The obtained data from these isotherm models were tested using some error functions (residual root mean squares error (RMSE), sum square error (SSE), and chi-square test (X2) function). Temkin isotherm model was the best isotherm fits the experimental data of APOR. Kinetic data were evaluated by pseudo-first-order (PFO), pseudo-second-order (PSO), and intraparticle diffusion models. The adsorption rate was found to follow PSO model with a good correlation (R2 = 0.999–1). A suggested, endothermic, multilayer, combined electrostatic and physical adsorption mechanism may be responsible for the removal of MB from water utilizing APOR. Adsorption is anticipated to start with chemisorption on active functional groups of adsorbent’s surface followed by physisorption of the subsequent layers through adsorbate–adsorbate interaction. The removal process was successfully applied for MB-spiked saline and brackish water with removal efficiencies of 51.7–97.2%. The results revealed that activated Posidonia oceanica rhizomes is a promising adsorbent for the removal of the methylene blue dye from real saline and brackish water with high removal efficiencies. Graphical Abstract

Funder

This research did not receive any funding

Delta University for Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3