Punica granatum peel extract mediated green synthesis of zinc oxide nanoparticles: structure and evaluation of their biological applications

Author:

Shaban Abdelghany S.,Owda Medhat E.,Basuoni Mostafa M.,Mousa Mohamed A.,Radwan Ahmed A.,Saleh Ahmed K.ORCID

Abstract

Abstract The green synthesis of zinc oxide nanoparticles (ZnO-NPs) mediated fruit peel extract is gaining importance due to its cost-effectiveness and ecofriendly nature. Herein, ZnO-NPs were synthesized using pomegranate peel extract as a reducing and stabilizing agent. The synthesized ZnO-NPs were characterized using SEM, TEM-SAID, FT-IR, XRD, and particle size analysis. According to the findings, the ZnO-NPs were agglomerated into spherical and hexagonal shapes with an average diameter of 20 to 40 nm and crystallinity formed. The antimicrobial activity of ZnO-NPs against pathogenic microbes was significant in multiple applications, with 62.5 and 31.25 μg/ml of MIC for both Gram-positive and Gram-negative bacteria, respectively, and 125 and 250 μg/ml of MIC for Aspergillus niger and Aspergillus flavus, respectively. In addition, ZnO-NPs showed antioxidant activity with IC50 = 240 and 250 μg/ml by DPPH and ABTS, respectively. All concentrations of ZnO-NPs significantly improved the germination of barley seed and shoot height, with the optimum concentration reaching 2 and 12 ppm of ZnO-NPs for both seed germination (90%) and shoot height (6.5), respectively, while the greatest root extension (6 cm) was observed at 2 ppm of ZnO-NPs. The mitotic index increased at lower nanoparticle concentrations and exposure times but declined considerably as the nanoparticle dose and exposure duration increased, until most concentrations reached 100% suppression after 12 h with various chromosomal abnormalities. The researchers were able to create efficient, eco-friendly, and simple multifunctional ZnO-NPs using a green synthetic strategy and, in the process, obtain a better understanding of the cytotoxicity and genotoxicity of ZnO-NPs in plant cells.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3