Integration of a drying and pyrolysis system in a green biorefinery: biochar product quality and impacts on the overall energy balance and climate footprint

Author:

Ravenni G.ORCID,Thomsen T. P.,Smith A. M.,Ambye-Jensen M.,Rohde-Nielsen K. T.,Henriksen Ulrik B.

Abstract

AbstractGreen biorefineries can support the reduction of soybeans imports to Europe, by producing protein-rich animal feed from alternative feedstock such as perennial grass and legume species. Once the protein-rich green juice is extracted, a fiber-rich pulp is left as a residue. This work investigates the thermochemical processing of the pulp via pyrolysis as an option to improve the energy balance and climate footprint of a green biorefinery, by producing non-fossil energy and a high-value biochar product. Laboratory-scale pyrolysis and biochar activation were carried out on pulp samples obtained from different perennial species, different pressing method, and maturity at harvest. The results highlighted the importance of the activation stage to obtain a porous biochar, potentially suitable as animal feed additive. The effects on the overall energy balance and climate impact of the system following the integration of pulp drying and pyrolysis, plus a possible activation step for the biochar, were evaluated with a techno-environmental assessment. The pulp sample composition had only limited influence on the climate impact potentials identified. In all cases, it was found that the integration of a combined drying-pyrolysis-activation system in the green biorefinery may provide substantial additional climate benefits but also that the magnitude of these is strongly dependent on the substitution use-value of the energy products.

Funder

Landbrugsstyrelsen

Technical University of Denmark

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3