Dye removal using novel adsorbents synthesized from plastic waste and eggshell: mechanism, isotherms, kinetics, thermodynamics, regeneration, and water matrices

Author:

Mensah KennethORCID,Mahmoud Hatem,Fujii Manabu,Samy Mahmoud,Shokry Hassan

Abstract

Abstract High-density polyethylene (HDPE) waste and chicken eggshell were used to synthesize three novel adsorbents, namely mesoporous graphene (MG), nano-eggshell modified graphene (nEMG), and nano-magnetic eggshell modified graphene (nM-EMG) for methyl red (MR) adsorption from simulated wastewater. The effects of adsorption conditions (pH, contact time, initial dye concentration, adsorbent dose, and temperature) were investigated. MG, nEMG, and nM-EMG were characterized using SEM, TEM, BET, EDX, XRD, and FTIR analyses. MG, nEMG, and nM-EMG had specific surface areas of 15, 31, and 179 m2/g and mean pore diameters of 27, 29, and 5 nm respectively. The equilibrium adsorption capacities of MG, nEMG, and nM-EMG were 5.6, 8.1, and 6.5 mg/g respectively at MR concentration of 100 mg/L, pH 4, adsorbent dose of 1.0 g/100 mL, and temperature of 25 °C. All MR sorption processes followed the pseudo-second-order and Langmuir–Freundlich model. The adsorption rates were controlled by intra-particle and film diffusion. MR uptake on the synthesized adsorbents was spontaneous, endothermic, and chemisorption. The adsorption occurred via electrostatic interactions, π electron interactions, and hydrogen bonding. The performance of the prepared adsorbents was examined in different water matrices and compared with other MR adsorbents. After five regeneration cycles, the adsorbent reusability study showed that nM-EMG is the most stable and reusable adsorbent.

Funder

Egypt Japan University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3