Enhanced adsorption of lead (II) ions onto cellulose nanoparticles/chitosan composite based on loofah sponge: kinetic and thermodynamic studies

Author:

Matter E. A.,Hassan Asaad F.ORCID,Elfaramawy Nourhan M.,Esmail Ghada

Abstract

AbstractThe purpose of this work is to study the efficiency of lead ions removal via adsorption onto created solid nanomaterials. Three solid adsorbents were synthesized as cellulose nanoparticles (CN) extracted from plant loofah sponge using alkali treatment and acid hydrolysis techniques, chitosan beads (CZ), and cellulose nanoparticles/chitosan beads composite (CZC). The generated solid adsorbents were investigated using TGA, N2 adsorption/desorption, ATR-FTIR spectroscopy, SEM, TEM, XRD, and pHPZC. Based on our findings, CZC had a pHPZC of 7.2, a larger specific surface area (645.3 m2/g), and a total pore volume (0.372 cm3/g). The batch adsorption of lead ions was well-fitted by pseudo-second order, Elovich, Langmuir, Temkin, and Dubinin-Radushkevich on all the samples. Cellulose nanoparticles/chitosan composite had the highest Langmuir adsorption capacity (221.104 mg/g) at 47°C, 120 min as shaking time, 2 g/L as adsorbent dose, and pH 6.5. Nitric acid had the highest desorption percentage (92%). The thermodynamic investigation revealed that lead ion adsorption is endothermic, favorable, spontaneous, and physisorption. Our findings showed that CZC has a high adsorption capacity and rapid kinetics, indicating its potential for employment in water treatment.

Funder

Damanhour University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3