Experimental investigation on hydrogen-rich syngas production via gasification of common wood pellet in Bangladesh: Optimization, mathematical modeling, and techno-econo-environmental feasibility studies

Author:

Hossain Md. Sanowar,Riad Mujahidul Islam,Bhowmik Showmitro,Das Barun K.

Abstract

AbstractSince hydrogen produces no emissions, there is increasing interest in its production throughout the world as the need for clean and sustainable energy grows. Bangladesh has an abundance of biomass, particularly wood pellets, which presents a huge opportunity for gasification to produce hydrogen. Gasification of mahogany (Swietenia mahagoni-SM) and mango (Mangifera indica-MI) wood is performed in a downdraft gasifier to evaluate the impact of particle size, equivalence ratio, and temperature on hydrogen gas composition and gasifier performance. Under the optimal conditions determined by central composite design-response surface methodology (CCD-RSM) optimization, gasification of SM and MI wood can greatly increase hydrogen yield and cold gas efficiency, offering a workable, environmentally friendly, and long-term solution to Bangladesh's energy shortage and pollution problems. Through RSM analysis the best operating conditions for gasification of SM wood include a feed size of 22.5 mm, equivalence ratio of 0.34, and operating temperature of 1176 K, where a total yield of hydrogen 11.2% was obtained. In the case of MI wood gasification, the optimum condition was found at feed size 22.5 mm, equivalence ratio 0.34, and operating temperature of 1132.47 K, where a total yield of hydrogen 12.85% was obtained. The economic study provides an LCOE of 0.1116 $/kWh, the project payback period is determined to be 10.7 years. By reusing wood waste from nearby sawmills, this study helps to manage waste sustainably by lowering pollution levels and deforestation. It also highlights wider sustainability effects by assisting international initiatives to fight climate change and advance energy independence.

Funder

Edith Cowan University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3