Detoxifying deoxynivalenol (DON)-contaminated feedstuff: consequences of sodium sulphite (SoS) treatment on performance and blood parameters in fattening pigs

Author:

Bahrenthien L.,Kluess J.ORCID,Berk A.,Kersten S.,Saltzmann J.,Hüther L.,Schatzmayr D.,Schwartz-Zimmermann H. E.,Zeyner A.,Dänicke S.

Abstract

AbstractA 10-week feeding experiment was carried out examining the effects of deoxynivalenol (DON)-contaminated maize treated with different sodium sulphite (SoS) concentrations on performance, health and DON-plasma concentrations in fattening pigs. Two maize batches were used: background-contaminated (CON, 0.73 mg/kg maize) and Fusarium-toxin contaminated (DON, 44.45 mg/kg maize) maize. Both were wet preserved at 20% moisture content, with one of three (0.0, 2.5, 5.0 g/kg maize) sodium sulphite concentrations and propionic acid (15%). Each maize batch was then mixed into a barley-wheat-based diet at a proportion of 10%, resulting in the following 6 feeding groups: CON− (CON + 0.0 g SoS/kg maize), CON2.5 (CON + 2.5 g SoS/kg maize), CON5.0 (CON + 5.0 g SoS/kg maize), DON- (DON + 0.0 g SoS/kg maize), DON2.5 (DON + 2.5 g SoS/kg maize) and DON5.0 (DON + 5.0 g SoS/kg maize). Dietary DON concentration was reduced by ~ 36% in group DON2.5 and ~ 63% in group DON5.0. There was no impact on ZEN concentration in the diets due to SoS treatment. Pigs receiving diet DON- showed markedly lower feed intake (FI) compared to those fed the control diets. With SoS-treatment of maize, FI of pigs fed the DON diet (DON5.0: 3.35 kg/d) were comparable to that control (CON−: 3.30 kg/day), and these effects were also reflected in live weight gain. There were some effects of SoS, DON or their interaction on serum urea, cholesterol and albumin, but always within the physiological range and thus likely negligible. SoS wet preservation of Fusarium-toxin contaminated maize successfully detoxified DON to its innocuous sulfonates, thus restoring impaired performance in fatteners.

Funder

Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit

Publisher

Springer Science and Business Media LLC

Subject

Toxicology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3