Multiple mycotoxins associated with maize (Zea mays L.) grains harvested from subsistence farmers’ fields in southwestern Ethiopia

Author:

Atnafu Birhane,Garbaba Chemeda Abedeta,Lemessa Fikre,Migheli Quirico,Sulyok Michael,Chala Alemayehu

Abstract

AbstractFifty-four maize grain samples freshly harvested from subsistence farmers’ fields in southwestern Ethiopia were analyzed for multiple mycotoxins using liquid chromatography-tandem mass spectrometric (LC-MS/MS) method following extraction by acetonitrile/water/acetic acid on a rotary shaker. The grain samples were contaminated with a total of 164 metabolites, of which Fusarium and Penicillium metabolites were the most prevalent accounting for 27 and 30%, respectively. All the major mycotoxins and derivatives except one (citrinin) were of Fusarium origin. Zearalenone was the most frequent major mycotoxin occurring in 74% of the samples at concentrations of 0.32–1310 µg/kg. It was followed by nivalenol (63%), zearalenone-sulfate (44%), and fumonisin B1 (41%). Nivalenol, nivalenol glucoside, and fusarenon-X were detected at unusually high levels of 8–1700 µg/kg, 21–184 µg/kg, and 33–149 µg/kg, respectively. Deoxynivalenol and DON-3 glucoside contaminated 32% of the samples, each at levels of 15.9–5140 µg/kg and 10–583 µg/kg, respectively. Moniliformin and W493B occurred in 96 and 22% samples at levels of 3.27–4410 µg/kg and 3–652 µg/kg, respectively. Fumonisins were also detected in the samples at levels of 9–6770 µg/kg (B1), 16–1830 µg/kg (B2), 9.5–808 µg/kg (B3), and 1.3–128 µg/kg (A1). This study confirmed the presence of an array of mycotoxins contaminating maize grains right from the field. The effect of the co-occurring mycotoxins on consumers’ health should be investigated along with that of the newly emerging ones. Results of the current study call for application of pre-harvest mycotoxin mitigation strategies to safeguard maize-based food and feed.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3