Fungal species and mycotoxins in mouldy spots of grass and maize silages in Austria

Author:

Penagos-Tabares Felipe,Khiaosa-ard RatchaneewanORCID,Schmidt Marlene,Pacífico Cátia,Faas Johannes,Jenkins Timothy,Nagl Veronika,Sulyok Michael,Labuda Roman,Zebeli Qendrim

Abstract

AbstractFungi and mycotoxins in silage can have detrimental consequences for both cattle and human health. This pilot study identified, via the routinary direct plating method, the dominant cultivable fungi in mouldy grass silages (GS) (n = 19) and maize silages (MS) (n = 28) from Austria. The profiles of regulated, modified, and emerging mycotoxins together with other fungal metabolites were analysed via LC-(ESI)MS/MS. Penicillium roqueforti, Saccharomyces spp., Geotrichum candidum, Aspergillus fumigatus and Monascus ruber were the most frequent fungal organisms identified. Other species including Mucor circinelloides, Fusarium spp. and Paecilomyces niveus were detected at lower frequencies. The presence of complex mixtures of toxic and potentially toxic compounds was evidenced by high levels and occurrences (≥ 50%) of Penicillium-produced compounds such as mycophenolic acid (MPA), roquefortines (ROCs), andrastins (ANDs) and marcfortine A. Mouldy silages contained toxins commonly produced by genus Fusarium (e.g. zearalenone (ZEN) and trichothecenes), Alternaria (like tenuazonic acid (TeA) and alternariol (AHO)) and Aspergillus (such as sterigmatocystin (STC)). Compared to those in GS, mouldy spots in MS presented significantly higher fungal counts and more diverse toxin profiles, in addition to superior levels of Fusarium spp., Penicillium spp. and total fungal metabolites. Generally, no correlation between mould counts and corresponding metabolites was detected, except for the counts of P. roqueforti, which were positively correlated with Penicillium spp. metabolites in mouldy MS. This study represents a first assessment of the fungal diversity in mouldy silage in Austria and highlights its potential role as a substantial contributor to contamination with complex mycotoxin mixtures in cattle diets.

Funder

Österreichische Forschungsförderungsgesellschaft

University of Veterinary Medicine Vienna

Publisher

Springer Science and Business Media LLC

Subject

Toxicology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3