Author:
Arcoya David,Sportelli Caterina
Abstract
AbstractThe first part of this paper concern with the study of the Lorentz force equation $$\begin{aligned} \left( \frac{q'}{\sqrt{1-|q'|^2}}\right) '= \overrightarrow{E}(t,q)+q'\times \overrightarrow{B}(t,q) \end{aligned}$$
q
′
1
-
|
q
′
|
2
′
=
E
→
(
t
,
q
)
+
q
′
×
B
→
(
t
,
q
)
in the relevant physical configuration where the electric field $$\overrightarrow{E}$$
E
→
has a singularity in zero. By using Szulkin’s critical point theory, we prove the existence of T-periodic solutions provided that T and the electric and magnetic fields interact properly. In the last part, we employ both a variational and a topological argument to prove that the scalar relativistic pendulum-type equation $$\begin{aligned} \left( \frac{q'}{\sqrt{1-(q')^2}}\right) ' +q = G^{\prime }(q) +h(t), \end{aligned}$$
q
′
1
-
(
q
′
)
2
′
+
q
=
G
′
(
q
)
+
h
(
t
)
,
admits at least a periodic solution when $$h\in L^1 (0, T)$$
h
∈
L
1
(
0
,
T
)
and G is singular at zero.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Physics and Astronomy,General Mathematics
Reference13 articles.
1. Ambrosetti, A., Arcoya, D.: On the relativistic pendulum-type equation. Differ. Integr. Equ. 33, 91–112 (2020)
2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
3. Arcoya, D., Bereanu, C., Torres, P.J.: Critical point theory for the Lorentz force equation. Arch. Ration. Mech. Anal. 232, 1685–1724 (2019)
4. Arcoya, D., Bereanu, C., Torres, P.J.: Lusternik–Schnirelman theory for the action integral of the Lorentz force equation. Calc. Var. Partial Differ. Equ. 59, 50 (2020)
5. Bereanu, C., Jebelean, P., Mawhin, J.: Variational methods for nonlinear perturbations of singular $$\phi $$-Laplacians. Rend. Lincei Mat. Appl. 22, 89–111 (2011)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献