Abstract
AbstractWe consider a perturbed version of the Robin eigenvalue problem for the p-Laplacian. The perturbation is $$(p - 1)$$
(
p
-
1
)
-superlinear. Using the Nehari manifold method, we show that for all parameters $$\lambda < {\hat{\lambda }}_1$$
λ
<
λ
^
1
(= the principal eigenvalue of the differential operator), there exists a ground-state nodal solution of the problem.
Funder
CNCS-UEFISCDI
Fundamental Research Funds for Central Universities of the Central South University
China Scholarship Council
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Physics and Astronomy,General Mathematics
Reference18 articles.
1. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)
2. Fragnelli, G., Mugnai, D., Papageorgiou, N.S.: The Brezis–Oswald result for quasilinear Robin problems. Adv. Nonlinear Stud. 16, 603–622 (2016)
3. Gasiński, L., Papageorgiou, N.S.: Positive solutions for the Robin $$p$$-Laplacian problem with competing nonlinearties. Adv. Calc. Var. 12, 31–56 (2019)
4. Gasiński, L., Winkert, P.: Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold. J. Differ. Equ. 274, 1037–1066 (2021)
5. Lacey, A.A., Ockendon, J.R., Sabina, J.: Multidimensional reaction-diffusion equations with nonlinear boundary conditions. SIAM J. Appl. Math. 58(5), 1622–1647 (1998)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献