1. Acevedo, P., Amrouche, C., Conca, C., Ghosh, A.: Stokes and Navier-Stokes equations with Navier boundary condition. C. R. Math. Acad. Sci. Paris 357(2), 115–119 (2019)
2. Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in $${\mathbb{R}}^n$$. J. Math. Pures Appl. 73(6), 579–606 (1994)
3. Amrouche, C., Girault, V., Giroire, J.: Dirichlet and Neumann exterior problems for the $$n$$-dimensional Laplace operator: an approach in weighted Sobolev spaces. J. Math. Pures Appl. 76(1), 55–81 (1997)
4. Amrouche, C., Meslameni, M.: Stokes problem with several types of boundary conditions in an exterior domain. Electron. J. Differ. Equ. 196, 1–28 (2013)
5. Amrouche, C., Rejaiba, A.: Stationary Stokes equations with friction slip boundary conditions. In: Twelfth International Conference Zaragoza-Pau on Mathematics, vol. 39 of Monogr. Mat. García Galdeano, pp. 23–32. Prensas Univ. Zaragoza, Zaragoza (2014)