Global continua of solutions to the Lugiato–Lefever model for frequency combs obtained by two-mode pumping

Author:

Gasmi Elias,Jahnke Tobias,Kirn Michael,Reichel Wolfgang

Abstract

AbstractWe consider Kerr frequency combs in a dual-pumped microresonator as time-periodic and spatially $$2\pi $$ 2 π -periodic traveling wave solutions of a variant of the Lugiato–Lefever equation, which is a damped, detuned and driven nonlinear Schrödinger equation given by $$\textrm{i}a_\tau =(\zeta -\textrm{i})a-d a_{x x}-|a|^2a+\textrm{i}f_0+\textrm{i}f_1\textrm{e}^{\textrm{i}(k_1 x-\nu _1 \tau )}$$ i a τ = ( ζ - i ) a - d a xx - | a | 2 a + i f 0 + i f 1 e i ( k 1 x - ν 1 τ ) . The main new feature of the problem is the specific form of the source term $$f_0+f_1\textrm{e}^{\textrm{i}(k_1 x-\nu _1 \tau )}$$ f 0 + f 1 e i ( k 1 x - ν 1 τ ) which describes the simultaneous pumping of two different modes with mode indices $$k_0=0$$ k 0 = 0 and $$k_1\in \mathbb {N}$$ k 1 N . We prove existence and uniqueness theorems for these traveling waves based on a-priori bounds and fixed point theorems. Moreover, by using the implicit function theorem and bifurcation theory, we show how non-degenerate solutions from the 1-mode case, i.e., $$f_1=0$$ f 1 = 0 , can be continued into the range $$f_1\not =0$$ f 1 0 . Our analytical findings apply both for anomalous ($$d>0$$ d > 0 ) and normal ($$d<0$$ d < 0 ) dispersion, and they are illustrated by numerical simulations.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Physics and Astronomy,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability of solitary wave solutions in the Lugiato–Lefever equation;Zeitschrift für angewandte Mathematik und Physik;2024-06-27

2. Pinning in the Extended Lugiato–Lefever Equation;SIAM Journal on Mathematical Analysis;2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3