A review of physical and engineering factors potentially affecting shear wave elastography

Author:

Nitta NaotakaORCID,Yamakawa Makoto,Hachiya Hiroyuki,Shiina Tsuyoshi

Abstract

AbstractIt has been recognized that tissue stiffness provides useful diagnostic information, as with palpation as a screening for diseases such as cancer. In recent years, shear wave elastography (SWE), a technique for evaluating and imaging tissue elasticity quantitatively and objectively in diagnostic imaging, has been put into practical use, and the amount of clinical knowledge about SWE has increased. In addition, some guidelines and review papers regarding technology and clinical applications have been published, and the status as a diagnostic technology is in the process of being established. However, there are still unclear points about the interpretation of shear wave speed (SWS) and converted elastic modulus in SWE. To clarify these, it is important to investigate the factors that affect the SWS and elastic modulus. Therefore, physical and engineering factors that potentially affect the SWS and elastic modulus are discussed in this review paper, based on the principles of SWE and a literature review. The physical factors include the propagation properties of shear waves, mechanical properties (viscoelasticity, nonlinearity, and anisotropy), and size and shape of target tissues. The engineering factors include the region of interest depth and signal processing. The aim of this review paper is not to provide an answer to the interpretation of SWS. It is to provide information for readers to formulate and verify the hypothesis for the interpretation. Therefore, methods to verify the hypothesis for the interpretation are also reviewed. Finally, studies on the safety of SWE are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3