1. Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage.
2. Allison, P. D. (2012). Handling missing data by maximum likelihood. In Paper presented at the SAS Global Forum, Orlando, FL. http://www.statisticalhorizons.com/wp-content/uploads/MissingDataByML.pdf . Accessed 18 April 2013.
3. Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations: What is it and how does it work? International Journal of Methods in Psychiatric Research, 20(1), 40–49. doi: 10.1002/mpr.329 .
4. Buhi, E. R., Goodson, P., & Neilands, T. B. (2008). Out of sight, not out of mind: Strategies for handling missing data. American Journal of Health Behavior, 32(1), 83–92.
5. Burton, A., & Altman, D. G. (2004). Missing covariate data within cancer prognostic studies: A review of current reporting and proposed guidelines. British Journal of Cancer, 91, 4–8. doi: 10.1038/sj.bjc.6601907 .