Multimodal electrospray thruster for small spacecraft: design and experimental characterization

Author:

Mallalieu Peter,Jugroot Manish

Abstract

AbstractElectrospray thrusters are a promising electric micropropulsion technology which could be used to meet the propulsion needs of nanosatellites, or for fine attitude control of larger spacecraft. Multimodal propulsion is the integration of two or more propulsion modes into a system which utilizes a common propellant. Indeed, spacecraft mission simulations and models have shown that this type of multimode propulsion capacity is exciting because of the flexibility and adaptability it provides mission designers and planners. A single spacecraft would have potential to execute drastically different mission profiles, and the exact mission could even be determined post-launch. The current paper investigates a micro-propulsion system which combines a droplet and ion mode electrospray emitter into a unified multimodal system (using an ionic liquid as the common propellant for both systems). The high relative thrust droplet mode emitter was fabricated from P3 borosilicate glass while the high efficiency ion mode emitter, Carbon Xerogel dense porous substrate, was fabricated in-house. To characterize the multimodal thruster, a full beam and time-of-flight (ToF) experimental setup were developed at the RMC Advanced Propulsion and Plasma Exploration Laboratory (RAPPEL) and experiments were conducted using a custom vacuum chamber. The ion mode emitter, with a beam comprised purely of ions had an onset voltage around 1400 V with an estimated thrust performance of 0.14 $$\mu N$$ μ N and specific impulse of 4040 s. For droplet mode, with a mixed beam comprised of around 17$$\%$$ % droplets and 83$$\%$$ % ions, an onset voltage of 1375 V with an estimated performance of thrust at 14 $$\mu N$$ μ N and specific impulse of 140 s were measured. The prototype thruster demonstrates how various electrospray emitters could be combined into a multimodal system to provide flexibility and adaptability in providing effective thrust for small satellites.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3