Author:
Michaux Etienne,Mazouffre Stéphane,Blanchet Antoine
Abstract
AbstractThe plasma parameters temporal evolution of a 30 W-class Vacuum Arc Thruster equipped with a Ni-Cr cathode is examined in the far-field region of the plasma jet. Measurements have been performed 20 cm downstream of the arc region where the plasma is created. The thruster operated at 1 Hz with 25 μs duration current pulses. The maximum current intensity reaches 4000 A about 8 μs after the discharge ignition. The change in the electron density, electron temperature and plasma potential during the short high-current pulse has been obtained by means of time-resolved Langmuir probe measurements. A time-of-flight technique based on a planar probe has been used to determine the mean ion velocity in the plasma jet. In addition, a Faraday cup allowed the determination of the ion current density. The electron density peaks at ∼ 8×1017 m−3 at 12 μs. The electron temperature is above 25 eV at 7 μs and then it stabilizes around 5 eV. Several ion populations are identified. The lowest ion mean velocity amounts to 20 km/s. Interestingly, combining all data allows to assess the ion mean electrical charge and its temporal behavior. The mean charge reaches 12 a few μs after ignition. It decays quickly afterwards and stays unchanged at 2 beyond 10 μs. Analysis of all the results support the idea of two distinct plasma discharge regimes.
Funder
H2020 Leadership in Enabling and Industrial Technologies
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献