Author:
Comi Giovanni E.,Spector Daniel,Stefani Giorgio
Abstract
AbstractWe continue the study of the fractional variation following the distributional approach developed in the previous works Bruè et al. (2021), Comi and Stefani (2019), Comi and Stefani (2019). We provide a general analysis of the distributional space $$BV^{\alpha ,p}({\mathbb {R}}^n)$$
B
V
α
,
p
(
R
n
)
of $$L^p$$
L
p
functions, with $$p\in [1,+\infty ]$$
p
∈
[
1
,
+
∞
]
, possessing finite fractional variation of order $$\alpha \in (0,1)$$
α
∈
(
0
,
1
)
. Our two main results deal with the absolute continuity property of the fractional variation with respect to the Hausdorff measure and the existence of the precise representative of a $$BV^{\alpha ,p}$$
B
V
α
,
p
function.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference35 articles.
1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin (1996)
2. Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. A (5) 14(1), 148–156 (1977)
3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)
4. Bellido, J.C., Cueto, J., Mora-Corral, C.: Fractional Piola identity and polyconvexity in fractional spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 37(4), 955–981 (2020)
5. Bellido, J.C., Cueto, J., Mora-Corral, C.: $$\Gamma $$-convergence of polyconvex functionals involving $$s$$-fractional gradients to their local counterparts. Calc. Var. Partial Differential Equations 60(1), 1–29 (2021)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献