Author:
Guo Zhongkai,Han Xiaoying,Hu Junhao
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Khasminskii, R.Z.: On the principle of averaging the Itô stochastic differential equations. Kibernetika 4(3), 260–279 (1968)
2. Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical sysytems with Lévy noise. Physica D. 240(17), 1395–1401 (2011)
3. Xu, Y., Pei, B., Wu, J.: Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion. Stoch. Dyn. 17(02), 1750013 (2017)
4. Pei, B., Xu, Y., Wu, J.: Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Appl. Math. Lett. 100, 106006 (2020)
5. Mao, W., Hu, L., You, S., Mao, X.: The averaging method for multivalued SDEs with jumps and non-Lipschitz coefficients. Discrete Contin. Dyn. Syst. Ser. B 24(9), 4937 (2019)