Author:
Carbotti Alessandro,Cito Simone,La Manna Domenico Angelo,Pallara Diego
Abstract
AbstractWe study the asymptotic behaviour of the renormalised s-fractional Gaussian perimeter of a set E inside a domain $$\Omega $$
Ω
as $$s\rightarrow 0^+$$
s
→
0
+
. Contrary to the Euclidean case, as the Gaussian measure is finite, the shape of the set at infinity does not matter, but, surprisingly, the limit set function is never additive.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference18 articles.
1. Ambrosio, L., De Philippis, G., Martinazzi, L.: Gamma-convergence of nonlocal perimeter functionals. Manuscripta Math. 134(3–4), 377–403 (2011)
2. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations, 439–455, IOS, Amsterdam (2001)
3. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Comm. Pure Appl. Math. 63(9), 1111–1144 (2010)
4. Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differential Equations 41(1–2), 203–240 (2011)
5. Carbotti, A., Cito, S., La Manna, D.A., Pallara, D.: Gamma convergence of Gaussian fractional perimeter. Advances in Calculus of Variations, Publ. online (2021). https://doi.org/10.1515/acv-2021-0032
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Cheeger problem in abstract measure spaces;Journal of the London Mathematical Society;2023-12-26