The fractional stochastic heat equation driven by time-space white noise

Author:

Moulay Hachemi Rahma Yasmina,Øksendal BerntORCID

Abstract

AbstractWe study the stochastic time-fractional stochastic heat equation$$\begin{aligned} \frac{\partial ^{\alpha }}{\partial t^{\alpha }}Y(t,x)=\lambda \varDelta Y(t,x)+\sigma W(t,x);\; (t,x)\in (0,\infty )\times \mathbb {R}^{d}, \end{aligned}$$αtαY(t,x)=λΔY(t,x)+σW(t,x);(t,x)(0,)×Rd,where$$d\in \mathbb {N}=\{1,2,...\}$$dN={1,2,...}and$$\frac{\partial ^{\alpha }}{\partial t^{\alpha }}$$αtαis the Caputo derivative of order$$\alpha \in (0,2)$$α(0,2), and$$\lambda >0$$λ>0and$$\sigma \in \mathbb {R}$$σRare given constants. Here$$\varDelta $$Δdenotes the Laplacian operator,W(tx) is time-space white noise, defined by$$\begin{aligned} W(t,x)=\frac{\partial }{\partial t}\frac{\partial ^{d}B(t,x)}{\partial x_{1}...\partial x_{d}}, \end{aligned}$$W(t,x)=tdB(t,x)x1...xd,$$B(t,x)=B(t,x,\omega ); t\ge 0, x \in \mathbb {R}^d, \omega \in \varOmega $$B(t,x)=B(t,x,ω);t0,xRd,ωΩbeing time-space Brownian motion with probability law$$\mathbb {P}$$P. We consider the equation (0.1) in the sense of distribution, and we find an explicit expression for the$$\mathcal {S}'$$S-valued solutionY(tx), where$$\mathcal {S}'$$Sis the space of tempered distributions. Following the terminology of Y. Hu [11], we say that the solution ismildif$$Y(t,x) \in L^2(\mathbb {P})$$Y(t,x)L2(P)for alltx. It is well-known that in the classical case with$$\alpha = 1$$α=1, the solution is mild if and only if the space dimension$$d=1$$d=1. We prove that if$$\alpha \in (1,2)$$α(1,2)the solution is mild if$$d=1$$d=1or$$d=2$$d=2. If$$\alpha < 1$$α<1we prove that the solution is not mild for anyd.

Funder

University of Oslo

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference25 articles.

1. Abel, N.H.: Oppløsning av et par oppgaver ved hjelp av bestemte integraler (in Norwegian). Magazin for naturvidenskaberne 55–68 (1823)

2. Benth, F.E.: Integrals in the Hida distribution space (S)*. In: Lindstrøm, B., Øksendal, B., Üstünel, A.S. (eds.) Stochastic Analysis and Related Topics, 8, pp. 89–99. Gordon & Breach (1993)

3. Binh, T.T., Tuan, N.H., Ngoc, T.B.: Hölder continuity of mild solutions of space-time fractional stochastic heat equation driven by colored noise. Eur. Phys. J. Plus 136(9), 1–21 (2021)

4. Bock, W., Grothaus, M., Orge, K.: Stochastic analysis for vector valued generalized grey Brownian motion. arXiv:2111.09229v1 (2021)

5. Bock, W., da Silva, J.L.: Wick type SDEs driven by grey Brownian motion. AIP Conf. Proc. 1871(1), 020004 (2017)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On approximation for time-fractional stochastic diffusion equations on the unit sphere;Journal of Computational and Applied Mathematics;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3