Author:
Beghin Luisa,De Gregorio Alessandro
Abstract
AbstractWe deal with complex spatial diffusion equations with time-fractional derivative and study their stochastic solutions. In particular, we complexify the integral operator solution to the heat-type equation where the time derivative is replaced with the convolution-type generalization of the regularized Caputo derivative. We prove that this operator is solution of a complex time-fractional heat equation with complex spatial variable. This approach leads to a wrapped Brownian motion on a circle time-changed by the inverse of the related subordinator. This time-changed Brownian motion is analyzed and, in particular, some results on its moments, as well as its construction as weak limit of continuous-time random walks, are obtained. The extension of our approach to the higher dimensional case is also provided.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献