Author:
Pach János,Steiger William,Szemerédi Endre
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference14 articles.
1. N. Alon and E. Györi. The number of small semispaces of a finite set of points.J. Combin. Theory Ser. A, 41:154–157, 1986.
2. I. Bárány, Z. Füredi, and L. Lovász. On the number of halving planes inR 3.Proc. Fifth ACM Symposium on Computational Geometry, pages 140–144, 1989.
3. B. Chazelle and F. Preparata. Halfspace range search: an algorithmic application ofk-sets.Discrete Comput. Geom., 1:83–93, 1986.
4. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Points and triangles in the plane and halving planes in space. Preprint, 1989.
5. K. Clarkson. New applications of random sampling in computational geometry.Discrete Comput. Geom., 2:195–222, 1987.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Finding Rank Regret Representatives;ACM Transactions on Database Systems;2022-08-18
2. Rederiving the Upper Bound for Halving Edges Using Cardano’s Formula;Advances in Intelligent Systems and Computing;2021-07-31
3. RRR;Proceedings of the 2019 International Conference on Management of Data;2019-06-25
4. Dense Point Sets with Many Halving Lines;Discrete & Computational Geometry;2019-03-25
5. Bibliography;Combinatorial Geometry;2011-10-28