Author:
Zheng Wenkui,Hou Wei,Lin Jerry Chun-Wei
Abstract
AbstractTo solve the problem of inaccurate entity extraction caused by low application efficiency and big data noise in telemedicine sensing data, a deep learning-based method for entity relationship extraction in telemedicine big data is proposed. By analyzing the distribution structure of the medical sensing big data, the fuzzy function of the distribution shape is calculated and the seed relationship set is transformed by the inverse Shearlet transform. Combined with the deep learning technology, the GMM-GAN data enhancement model is built, the interactive medical sensing big data features are obtained, the association rules are matched one by one, the noiseless medical sensing data are extracted in time sequence, the feature items with the highest similarity are obtained and used as the constraint to complete the feature entity relationship extraction of the medical sensing data. The experimental results show that the extracted similarity of entity relations is more than 70%, which can handle overly long and complex sentences in telemedicine information text; the extraction time is the shortest and the volatility is low.
Funder
Western Norway University Of Applied Sciences
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Information Systems,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献