Abstract
AbstractIn order to reduce the risk of authorized users being interrupted in the cognitive satellite wireless network, a multi-step prediction approach based on a cascaded forward artificial neural network is proposed to predict user behavior in the designed scenario. This approach uses the powerful learning ability of the cascaded forward network to analyze the historical spectrum occupancy records of licensed users, and then predict the user behavior in the next few time slots. The prediction result can help the base station in the cognitive network to schedule the dynamic access process of the cognitive users, and reduce the interference caused by the cognitive user to the authorized users. Finally, compared with traditional prediction algorithms, it is verified that the proposed multi-step prediction algorithm can effectively reduce the probability of spectrum conflicts.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Information Systems,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献