Mining Regional Mobility Patterns for Urban Dynamic Analytics

Author:

Lian Jing,Li Yang,Gu Weixi,Huang Shao-Lun,Zhang LinORCID

Funder

Shenzhen Science and Technology Research and Development Funds

Shenzhen Municipal Development and Reform Commission

Natural Science Foundation of China

Innovation and entrepreneurship project for overseas high-level talents of Shenzhen

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Reference32 articles.

1. Arthur D (2007) Vassilvitskii, s.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp 1027–1035

2. Breiman L, Friedman JH (1985) Estimating optimal transformations for multiple regression and correlation. J Am Stat Assoc 80(391):580–598

3. Ding C, He X (2004) K-nearest-neighbor consistency in data clustering: incorporating local information into global optimization. In: Proceedings of the 2004 ACM Symposium on Applied Computing, ACM, pp 584–589

4. Ester M, Kriegel HP, Sander J, Xu X, et al. (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231

5. Gao S (2015) Spatio-temporal analytics for exploring human mobility patterns and urban dynamics in the mobile age. Spat Cogn Comput 15(2):86–114

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial–temporal graph neural network traffic prediction based load balancing with reinforcement learning in cellular networks;Information Fusion;2024-03

2. Universal Features for High-Dimensional Learning and Inference;Foundations and Trends® in Communications and Information Theory;2024

3. Markov Chain Mobility Model for Multi-lane Highways;Mobile Networks and Applications;2022-02-21

4. Land‐use dynamic discovery based on heterogeneous mobility sources;International Journal of Intelligent Systems;2020-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3