A new framework for Physical Layer Security in HetNets based on Radio Resource Allocation and Reinforcement Learning

Author:

Marabissi Dania,Abrardo Andrea,Mucchi Lorenzo

Abstract

AbstractDensification of networks through heterogeneous cells deployment is considered a key technology to satisfy the huge traffic growth in future wireless systems. In addition to achieving the required communication capacity and efficiency, another significant challenge arises from the broadcast nature of wireless channels: vulnerability to wiretapping. Physical-layer security is envisaged as an additional level of security to provide confidentiality of radio communications. Typical characteristics of the wireless channel (noise, interference) can be exploited to keep a message confidential from potential eavesdroppers. In particular, heterogeneous networks (HetNet) have inherent security features: while the legitimate user can benefit of the HetNet architecture, the eavesdropper is strongly affected by the inter-cell interference. This paper presents an overview of HetNets intrinsic security benefits, mainly focusing on users association and resource allocation policies. In particular, allocation of radio resources is a poorly investigated topic when related to information security. However, in systems with a large radio resource reuse like HetNets, co-channel interference can be suitably exploited to resist to the eavesdropper. This paper presents a new framework for radio resources allocation using reinforcement learning (Q-learning) to increase the security level in HetNets. A coordinated scheduling among different cells using the same radio resources is proposed based on the exploitation of the spatial information. The goal is to optimize the security at physical layer. The reinforcement learning approach represents a feasible and efficient solution to the proposed problem.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing UAVHetNet security through functional encryption framework;Concurrency and Computation: Practice and Experience;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3