Service Function Chain Placement for Joint Cost and Latency Optimization

Author:

Khoshkholghi Mohammad AliORCID,Gokan Khan Michel,Alizadeh Noghani Kyoomars,Taheri Javid,Bhamare Deval,Kassler Andreas,Xiang Zhengzhe,Deng Shuiguang,Yang Xiaoxian

Abstract

AbstractNetwork Function Virtualization (NFV) is an emerging technology to consolidate network functions onto high volume storages, servers and switches located anywhere in the network. Virtual Network Functions (VNFs) are chained together to provide a specific network service, called Service Function Chains (SFCs). Regarding to Quality of Service (QoS) requirements and network features and states, SFCs are served through performing two tasks: VNF placement and link embedding on the substrate networks. Reducing deployment cost is a desired objective for all service providers in cloud/edge environments to increase their profit form demanded services. However, increasing resource utilization in order to decrease deployment cost may lead to increase the service latency and consequently increase SLA violation and decrease user satisfaction. To this end, we formulate a multi-objective optimization model to joint VNF placement and link embedding in order to reduce deployment cost and service latency with respect to a variety of constraints. We, then solve the optimization problem using two heuristic-based algorithms that perform close to optimum for large scale cloud/edge environments. Since the optimization model involves conflicting objectives, we also investigate pareto optimal solution so that it optimizes multiple objectives as much as possible. The efficiency of proposed algorithms is evaluated using both simulation and emulation. The evaluation results show that the proposed optimization approach succeed in minimizing both cost and latency while the results are as accurate as optimal solution obtained by Gurobi (5%).

Funder

Knowledge Foundation of Sweden

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3