Rhamnetin ameliorates non-alcoholic steatosis and hepatocellular carcinoma in vitro

Author:

Shatta Mahmoud A.,El-Derany Marwa O.,Gibriel Abdullah A.,El-Mesallamy Hala O.

Abstract

AbstractNon-alcoholic fatty liver (NAFLD) is a widespread disease with various complications including Non-alcoholic steatohepatitis (NASH) that could lead to cirrhosis and ultimately hepatocellular carcinoma (HCC). Up till now there is no FDA approved drug for treatment of NAFLD. Flavonoids such as Rhamnetin (Rhm) have been ascribed effective anti-inflammatory and anti-oxidative properties. Thus, Rhm as a potent flavonoid could target multiple pathological cascades causing NAFLD to prevent its progression into HCC. NAFLD is a multifactorial disease and its pathophysiology is complex and is currently challenged by the ‘Multiple-hit hypothesis’ that includes wider range of comorbidities rather than previously established theory of ‘Two-hit hypothesis’. Herein, we aimed at establishing reliable in vitro NASH models using different mixtures of variable ratios and concentrations of oleic acid (OA) and palmitic acid (PA) combinations using HepG2 cell lines. Moreover, we compared those models in the context of oil red staining, triglyceride levels and their altered downstream molecular signatures for genes involved in de novo lipogenesis, inflammation, oxidative stress and apoptotic machineries as well. Lastly, the effect of Rhm on NASH and HCC models was deeply investigated. Over the 10 NASH models tested, PA 500 µM concentration was the best model to mimic the molecular events of steatosis induced NAFLD. Rhm successfully ameliorated the dysregulated molecular events caused by the PA-induced NASH. Additionally, Rhm regulated inflammatory and oxidative machinery in the HepG2 cancerous cell lines. In conclusion, PA 500 µM concentration is considered an effective in vitro model to mimic NASH. Rhm could be used as a promising therapeutic modality against both NASH and HCC pathogenesis.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3