Abstract
AbstractHuman beings are exposed to various environmental xenobiotics throughout their life consisting of a broad range of physical and chemical agents that impart bodily harm. Among these, pesticide exposure that destroys insects mainly by damaging their central nervous system also exerts neurotoxic effects on humans and is implicated in the etiology of several degenerative disorders. The connectivity between CREB (cAMP Response Element Binding Protein) signaling activation and neuronal activity is of broad interest and has been thoroughly studied in various diseased states. Several genes, as well as protein kinases, are involved in the phosphorylation of CREB, including BDNF (Brain-derived neurotrophic factor), Pi3K (phosphoinositide 3-kinase), AKT (Protein kinase B), RAS (Rat Sarcoma), MEK (Mitogen-activated protein kinase), PLC (Phospholipase C), and PKC (Protein kinase C) that play an essential role in neuronal plasticity, long-term potentiation, neuronal survival, learning, and memory formation, cognitive function, synaptic transmission, and suppressing apoptosis. These elements, either singularly or in a cascade, can result in the modulation of CREB, making it a vulnerable target for various neurotoxic agents, including pesticides. This review provides insight into how these various intracellular signaling pathways converge to bring about CREB activation and how the activated or deactivated CREB levels can affect the gene expression of the upstream molecules. We also discuss the various target genes within the cascade vulnerable to different types of pesticides. Thus, this review will facilitate future investigations associated with pesticide neurotoxicity and identify valuable therapeutic targets.
Funder
Science and Engineering Research Board
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献