Detecting atrial fibrillation in the polysomnography-derived electrocardiogram: a software validation study

Author:

van Kempen Julia,Glatz Christian,Wolfes Julian,Frommeyer Gerrit,Boentert MatthiasORCID

Abstract

Abstract Purpose The present study validated a software-based electrocardiogram (ECG) analysis tool for detection of atrial fibrillation (AF) and risk for AF using polysomnography (PSG)-derived ECG recordings. Methods The Stroke Risk Analysis® (SRA®) software was applied to 3-channel ECG tracings from diagnostic PSG performed in enrolled subjects including a subgroup of subjects with previously documented AF. No subjects used positive airway pressure therapy. All ECG recordings were visually analyzed by a blinded cardiologist. Results Of subjects enrolled in the study, 93 had previously documented AF and 178 of 186 had an ECG that could be analyzed by either method. In subjects with known history of AF, automated analysis using SRA® classified 47 out of 87 ECG as either manifest AF or showing increased risk for paroxysmal AF (PAF) by SRA® (sensitivity 0.54, specificity 0.86). On visual analysis, 36/87 ECG showed manifest AF and 51/87 showed sinus rhythm. Among the latter subgroup, an increased risk for PAF was ascribed by SRA® in 11 cases (sensitivity 0.22, specificity 0.78) and by expert visual analysis in 5 cases (sensitivity 0.1, specificity 0.90). Among 36/178 ECG with manifest AF on visual analysis, 33 were correctly identified by the SRA® software (sensitivity and specificity 0.92). Conclusion Sleep studies provide a valuable source of ECG recordings that can be easily subjected to software-based analysis in order to identify manifest AF and automatically assess the risk of PAF. For optimal evaluability of data, multiple channel ECG tracings are desirable. For assessment of PAF risk, the SRA® analysis probably excels visual analysis, but sensitivity of both methods is low, reflecting that repeated ECG recording remains essential.

Funder

Westfälische Wilhelms-Universität Münster

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3