1. G.E. Collins and R. Loos. Real zeros of polynomials. In B. Buchberger, G. E. Collins and R. Loos, editors, Computer Algebra, pages 83–94. Springer-Verlag, 2nd edition, 1983.
2. T.H. Corman, C.E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algorithms. The MIT Press and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, second edition, 2001.
3. J.H. Davenport. Computer algebra for cylindrical algebraic decomposition. Technical report, The Royal Institute of Technology, Dept. of Numerical Analysis and Computing Science, S-100 44, Stockholm, Sweden, 1985. Reprinted as: Tech. Report 88-10, School of Mathematical Sciences, Univ. of Bath, Claverton Down, bath BA2 7AY, England.
4. A. Eigenwillig, V. Sharma and Chee Yap. Almost tight complexity bounds for the Descartes method. In Proc. Int’l Symp. Symbolic and Algebraic Computation (ISSAC’06), 2006. To appear. Genova, Italy. Jul 9–12, 2006.
5. J.R. Johnson. Algorithms for polynomial real root isolation. In B.F. Caviness and J.R. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and monographs in Symbolic Computation, pages 269–299. Springer, 1998.