Bivariate Analysis of Birth Weight and Gestational Age by Bayesian Distributional Regression with Copulas

Author:

Rathjens JonathanORCID,Kolbe Arthur,Hölzer Jürgen,Ickstadt Katja,Klein Nadja

Abstract

AbstractWe analyze perinatal data including biometric and obstetric information as well as data on maternal smoking, among others. Birth weight is the primarily interesting response variable. Gestational age is usually an important covariate and included in polynomial form. However, in opposition to this univariate regression, bivariate modeling of birth weight and gestational age is recommended to distinguish effects on each, on both, and between them. Rather than a parametric bivariate distribution, we apply conditional copula regression, where the marginal distributions of birth weight and gestational age (not necessarily of the same form) and the dependence structure are modeled conditionally on covariates. In the resulting distributional regression model, all parameters of the two marginals and the copula parameter are observation specific. While the Gaussian distribution is suitable for birth weight, the skewed gestational age data are better modeled by the three-parameter Dagum distribution. The Clayton copula performs better than the Gumbel and the symmetric Gaussian copula, indicating lower tail dependence (stronger dependence when both variables are low), although this non-linear dependence between birth weight and gestational age is surprisingly weak and only influenced by Cesarean section. A non-linear trend of birth weight on gestational age is detected by a univariate model that is polynomial with respect to the effect of gestational age. Covariate effects on the expected birth weight are similar in our copula regression model and a univariate regression model, while distributional copula regression reveals further insights, such as effects of covariates on the association between birth weight and gestational age.

Funder

Deutsche Forschungsgemeinschaft

Mercator Research Center Ruhr

Technische Universität Dortmund

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3