Enabling Studies of Genome-Scale Regulatory Network Evolution in Large Phylogenies with MRTLE

Author:

Zhang Shilu,Knaack Sara,Roy Sushmita

Abstract

AbstractTranscriptional regulatory networks specify context-specific patterns of genes and play a central role in how species evolve and adapt. Inferring genome-scale regulatory networks in non-model species is the first step for examining patterns of conservation and divergence of regulatory networks. Transcriptomic data obtained under varying environmental stimuli in multiple species are becoming increasingly available, which can be used to infer regulatory networks. However, inference and analysis of multiple gene regulatory networks in a phylogenetic setting remains challenging. We developed an algorithm, Multi-species Regulatory neTwork LEarning (MRTLE), to facilitate such studies of regulatory network evolution. MRTLE is a probabilistic graphical model-based algorithm that uses phylogenetic structure, transcriptomic data for multiple species, and sequence-specific motifs in each species to simultaneously infer genome-scale regulatory networks across multiple species. We applied MRTLE to study regulatory network evolution across six ascomycete yeasts using transcriptomic measurements collected across different stress conditions. MRTLE networks recapitulated experimentally derived interactions in the model organism S. cerevisiae as well as non-model species, and it was more beneficial for network inference than methods that do not use phylogenetic information. We examined the regulatory networks across species and found that regulators associated with significant expression and network changes are involved in stress-related processes. MTRLE and its associated downstream analysis provide a scalable and principled framework to examine evolutionary dynamics of transcriptional regulatory networks across multiple species in a large phylogeny.

Publisher

Springer US

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3