Abstract
AbstractI show how to use OncoSimulR, software for forward-time genetic simulations, to simulate evolution of asexual populations in the presence of epistatic interactions. This chapter emphasizes the specification of fitness and epistasis, both directly (i.e., specifying the effects of individual mutations and their epistatic interactions) and indirectly (using models for random fitness landscapes).
Reference37 articles.
1. Aita T, Uchiyama H, Inaoka T, Nakajima M, Kokubo T, Husimi Y (2000) Analysis of a local fitness landscape with a model of the rough Mt. Fuji-type landscape: application to prolyl endopeptidase and thermolysin. Biopolymers 54(1):64–79. https://doi.org/10.1002/(SICI)1097-0282(200007)54:1%3C64::AID-BIP70%3E3.0.CO;2-R. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0282%28200007%2954%3A1%3C64%3A%3AAID-BIP70%3E3.0.CO%3B2-R
2. Beerenwinkel N, Eriksson N, Sturmfels B (2007) Conjunctive Bayesian networks. Bernoulli 13(4):893–909. https://doi.org/10.3150/07-BEJ6133. http://projecteuclid.org/euclid.bj/1194625594
3. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW, Vogelstein B, Nowak MA (2010) Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA 107:18545–18550. https://doi.org/10.1073/pnas.1010978107. http://www.ncbi.nlm.nih.gov/pubmed/20876136
4. Brouillet S, Annoni H, Ferretti L, Achaz G (2015) MAGELLAN: a tool to explore small fitness landscapes. bioRxiv, p. 031583. https://doi.org/10.1101/031583. http://biorxiv.org/content/early/2015/11/13/031583
5. Caravagna G, Graudenzi A, Ramazzotti D, Sanz-Pamplona R, Sano LD, Mauri G, Moreno V, Antoniotti M, Mishra B (2016) Algorithmic methods to infer the evolutionary trajectories in cancer progression. Proc Natl Acad Sci USA 113(28):E4025–E4034. https://doi.org/10.1073/pnas.1520213113. http://www.pnas.org/content/113/28/E4025